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ABSTRACT

The accuracy of the Distribution Derivative Method (DDM) [1]

is evaluated on mixtures of chirp signals. It is shown that accurate

estimation can be obtained when the sets of atoms for which the in-

ner product is large are disjoint. This amounts to designing atoms

with windows whose Fourier transform exhibits low sidelobes but

which are once-differentiable in the time-domain. A technique for

designing once-differentiable approximations to windows is pre-

sented and the accuracy of these windows in estimating the pa-

rameters of sinusoidal chirps in mixture is evaluated.

1. INTRODUCTION

Additive synthesis using a sum of sinusoids plus noise is a pow-

erful model for representing audio [2], allowing for the easy im-

plementation of many manipulations such as time-stretching [3]

and timbre-morphing [4]. In these papers, [2–4] the phase evolu-

tion of the sinusoid is assumed linear over the analysis frame, only

the phase and frequency of the sinusoids at these analysis points

are used to fit a plausible phase function after some the analysis

points are connected to form a partial [5]. Recently, there has been

interest in using higher-order phase functions [6] as the estima-

tion of their parameters has been made possible by a new set of

techniques of only moderate computational complexity using sig-

nal derivatives [7]. The use of higher-order phase models allows

for accurate description of highly modulated signals, for example

in the analysis of birdsong [8]. The frequency modulation infor-

mation has also been used in the regularization of mathematical

programs for audio source separation [9].

The sinusoidal model approximating signal s typically consid-

ered is

s̃(t) = exp(a0 +

Q
∑

q=1

aqt
q) + η(t) (1)

where s̃ is the approximating signal, t the variable of time, the

aq ∈ C coefficients of the argument’s polynomial, and η(t) white

Gaussian noise. Although this technique can be extended to de-

scribe a single sinusoid of arbitrary complexity simply by increas-

ing Q, it remains essential to consider signals featuring a sum of

P such components, whether they represent the harmonic structure

of a musical sound or the union of partials resulting from a mixture

of multiple signal sources (e.g., recordings of multiple speakers or

performers), i.e.,

x(t) =

P
∑

p=1

xp(t) + η(t) (2)
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with

xp(t) = exp(ap,0 +

Q
∑

q=1

ap,qt
q) (3)

As regards the design and evaluation of signal-derivatives analysis

techniques, previous work has generally assumed signals contain-

ing a single component, i.e., P = 1 or assumed the influence of

other components to be negligible. Later we will refine when this

assumption can be made. In [10] the authors provide a comprehen-

sive evaluation of various signal-derivatives analysis methods ap-

plied to a single-component signal. In [11] the extent to which two

components in mixture can corrupt estimations of the frequency

slope (ℑ{a0,2} and ℑ{a1,2}) is investigated in the context of the

reassignment method, one of the signal-derivatives techniques, but

the corruption of the other parameters is not considered.

In this paper, we revisit the quality of signal-derivatives esti-

mation of all the aq when analyzing a mixture of components. We

focus on the DDM [1] analysis method for its convenience as it can

simply be considered as an atomic decomposition (see Sec. 2), and

does not require computing derivatives of the signal to be analysed.

The DDM does, however, require a once-differentiable analy-

sis window. As we are interested in windows with lower sidelobes

in order to better estimate parameters of sinusoidal chirp signals

in mixture, we seek windows that combine these two properties.

For this, a technique to design once-differentiable approximations

to arbitrary symmetrical windows is proposed and presented along

with a design example for a high-performance window. Finally we

evaluate the performance of various once-differentiable windows

in estimating the parameters aq .

2. ESTIMATING THE PARAMETERS aq

We will now show briefly how the DDM can be used to estimate

the aq . Based on the theory of distributions [12], the DDM makes

use of “test functions” or atoms ψ. These atoms must be once

differentiable with respect to time variable t and be non-zero only

on a finite interval [−Lt

2
, Lt

2
]. First, we define the inner product

〈x, ψ〉 =

∫

∞

−∞

x(t)ψ(t)dt (4)

and the operator

T α : (T αx)(t) = tαx(t) (5)

Consider the weighted signal

f(t) = x(t)ψ(t) (6)
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differentiating with respect to t we obtain

df

dt
(t) =

dx

dt
(t)ψ(t) + x(t)

dψ

dt
(t) =

(

Q
∑

q=1

qaqt
q−1

)

x(t)ψ(t) + x(t)
dψ

dt
(t) (7)

Because ψ is zero outside of the interval [−Lt

2
, Lt

2
], integrating

df

dt
(t) we obtain

∫

∞

−∞

df

dt
(t)dt =

Q
∑

q=1

qaq

∫
Lt

2

−
Lt

2

tq−1x(t)ψ(t)dt+

〈

x,
dψ

dt

〉

= 0 (8)

or, using the operator T α,

Q
∑

q=1

qaq
〈

T q−1x, ψ
〉

= −

〈

x,
dψ

dt

〉

(9)

Estimating coefficients aq , 1 < q ≤ Q, simply requiresR atoms

ψr with R ≥ Q to solve the linear system of equations

Q
∑

q=1

qaq
〈

T q−1x, ψr
〉

= −

〈

x,
dψr
dt

〉

(10)

for 1 ≤ r ≤ R.

To estimate a0 we rewrite the signal we are analysing as

x(t) = exp(a0)γ(t) + ǫ(t) (11)

where ǫ(t) is the error signal, the part of the signal that is not

explained by our model, and γ(t) is the part of the signal whose

coefficients have already been estimated, i.e.,

γ(t) = exp

(

Q
∑

q=1

aqt
q

)

(12)

Computing the inner product 〈x, γ〉, we have

〈x, γ〉 = 〈exp(a0)γ, γ〉+ 〈ǫ, γ〉 (13)

The inner product between ǫ and γ is 0, by the orthogonality prin-

ciple [13, ch. 12]. Furthermore, because exp(a0) does not depend

on t, we have

〈x, γ〉 = exp(a0) 〈γ, γ〉 (14)

so we can estimate a0 as

a0 = log (〈x, γ〉)− log (〈γ, γ〉) (15)

As will be seen in subsequent sections, the DDM typically in-

volves taking the discrete Fourier transform (DFT) of the signal

windowed by both an everywhere once-differentiable function of

finite support (e.g., the Hann window) and this function’s deriva-

tive. A small subset of atoms corresponding to the peak bins in the

DFT are used in Eq. 10 to solve for the parameters aq .

3. ESTIMATING THE ap,q OF P COMPONENTS

We examine how the mixture model influences the estimation of

the ap,q in Eq. 3. Consider a mixture of P components. If we

define the weighted signal sum

g(t) =

P
∑

p=1

xp(t)ψ(t) =

P
∑

p=1

fp(t) (16)

and substitute g for f in Eq. 7 we obtain

P
∑

p=1

∫
Lt

2

−
Lt

2

dfp
dt

(t)dt = 0 =

P
∑

p=1

(

Q
∑

q=1

qap,q
〈

T q−1xp, ψ
〉

+

〈

xp,
dψ

dt

〉

)

(17)

From this we see if
〈

T q−1xp, ψr
〉

and
〈

xp,
dψr

dt

〉

are small for

all but p = p∗ and a subset of R atoms1, we can simply estimate

the parameters ap∗,q using

Q
∑

q=1

qap∗,q
〈

T q−1xp∗ , ψr
〉

= −

〈

xp∗ ,
dψr
dn

〉

(18)

for 1 ≤ r ≤ R. To compute ap∗,0 we simply use

γp∗(t) = exp

(

Q
∑

q=1

ap∗,qt
q

)

(19)

in place of γ in Eq. 15.

4. DESIGNING THE ψR

In practice, an approximation of Eq. 4 is evaluated using the DFT

on a signal x that is properly sampled and so can be evaluated at a

finite number of times nT with n ∈ [0, N − 1] and T the sample

period in seconds. In this way, the chosen atoms ψω(t) are the

products of the elements of the Fourier basis and an appropriately

chosen window w that is once differentiable and finite, i.e.,

ψω(t) = w(t) exp(−jωt) (20)

Defining N = Lt

T
and angular frequency at bin r as ωr = 2π r

N
,

the approximate inner product is then

〈x, ψω〉 ≈

N−1
∑

n=0

x(Tn)w(Tn) exp(−2πjr
n

N
) (21)

i.e., the definition of the DFT of a windowed signal2. The DFT

is readily interpreted as a bank of bandpass filters centred at nor-

malized frequencies r
N

and with frequency response described by

1The notation x∗ will mean the value of the argument x maximizing or
minimizing some function.

2Notice however that this is an approximation of the inner product and
should not be interpreted as yielding the Fourier series coefficients of a
properly sampled signal x periodic in Lt. This means that other evalua-
tions of the inner product that yield more accurate results are possible. For
example, the analytic solution is possible if x is assumed zero outside of

[−Lt

2
, Lt

2
] (the ψ are in general analytic). In this case the samples of x are

convolved with the appropriate interpolating sinc functions and the integral
of this function’s product with ψ is evaluated.
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Figure 1: Comparing the main-lobe and asymptotic power spectrum characteristics of the continuous 4-term Nuttall window, the digital

prolate window with W = 0.008, and the continuous approximation to the digital prolate window.

the Fourier transform of modulated w [14]. Therefore choosing ψ
amounts to a filter design problem under the constraints that the

impulse response of the filter be differentiable in t and finite. To

minimize the influence of all but one component, granted the com-

ponents’s energy concentrations are sufficiently separated in fre-

quency, we desire impulse responses whose magnitude response

gives maximum out-of-band rejection or equivalently, windows

whose Fourier transform exhibits the lowest sidelobes.

In all the publications reviewed on the DDM for this paper, the

window used was the Hann window which is once-differentiable

everywhere in the time-domain. In [11], a publication on the re-

assignment method, other windows than the Hann are considered

but these windows must be twice-differentiable. Nuttall [15] has

designed windows with lower sidelobes than the canonical Hann

window which are everywhere at least once-differentiable. It is

also possible to design approximations to arbitrary symmetrical

window functions using harmonically related cosines, as is dis-

cussed in the following section.

5. DIFFERENTIABLE APPROXIMATIONS TO

WINDOWS

A differentiable approximation to a symmetrical window can be

designed in a straightforward way. In [16] and [17] it is shown

how to design optimal windows of lengthN samples using a linear

combination of M harmonically related cosines

w̃(n) =

M−1
∑

m=0

bm cos(2πm
n

N
)R(

n

N
) (22)

where R is the rectangle function. This function is discontinuous

at n = ±N
2

, and therefore not differentiable there, unless

M−1
∑

m=0

bm cos(±πm) = 0 (23)

Rather than design based on an optimality criterion, such as

the height of the highest sidelobe [17], a once-differentiable ap-

proximation to an existing window w is desired. To do this, we

choose the bm so that the window w̃’s squared approximation er-

ror to w is minimized while having w̃(±N
2

) = 0, i.e. we find the

solution {b∗m} to the mathematical program

minimize

N−1
∑

n=0

(w(n)−

M−1
∑

m=0

bm cos(2πm
n

N
))2 (24)

subject to

M−1
∑

m=0

bm cos(πm) = 0 (25)

which can be solved using constrained least-squares; a standard

numerical linear algebra routine [18, p. 585].

6. A CONTINUOUS WINDOW DESIGN EXAMPLE

As a design example we show how to create a continuous approx-

imation of a digital prolate spheroidal window.

Digital prolate spheroidal windows are a parametric approx-

imation to functions whose Fourier transform’s energy is max-

imized in a given bandwidth [19]. These can be tuned to have

extremely low sidelobes, at the expense of main-lobe width. Dif-

ferentiation of these window functions may be possible but is not

as straightforward as differentiation of the sum-of-cosine windows

above. Furthermore, the windows do not generally have end-points

equal to 0. In the following we will demonstrate how to approx-

imate a digital prolate spheroidal window with one that is every-

where at least once-differentiable.

In [20] it was shown how to construct digital prolate spher-

oidal windows under parametersN , the window length in samples,

and a parameter W choosing the (normalized) frequency range in

which the proportion of the main lobe’s energy is to be maximized.

We chose N = 512 based on the window length chosen in [1] for

ease of comparison. Its W parameter’s value was chosen by syn-

thesizing windows with W ranging between 0.005 and 0.010 at a
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Figure 2: The estimation variance of random polynomial phase sinusoids averaged over K1 = 1000 trials using atoms generated from

various windows. C is the Cramér-Rao lower bound, N3 and N4 are the 3- and 4-cosine-term continuous Nuttall windows, H is the Hann

window, and P5 is the continuous 5-cosine-term approximation to a digital prolate window as described in Sec. 6.

Table 1: The coefficients of the once-differentiable approximation

to a digital prolate window designed in Sec. 6.

b0 = 3.128 ×10−1

b1 = 4.655 ×10−1

b2 = 1.851 ×10−1

b3 = 3.446 ×10−2

b4 = 2.071 ×10−3

resolution of 0.001. The window with the closest 3 dB bandwidth

to the 4-term Nuttall window was obtained with W = 0.008. Its

magnitude response is shown in Fig. 1. We see that this window’s

asymptotic falloff is 6 dB per octave and therefore has a disconti-

nuity somewhere in its domain [15].

We designed an approximate window using Eq. 24 for M
varying between 2 and N/8 to find the best approximation to the

digital prolate window’s main lobe using a small number of cosines.

The M giving the best approximation was 5. The magnitude re-

sponse of the approximation is shown in Fig. 1 and its coefficients

are listed in Tab. 1; the temporal shape is very close to a digital pro-

late spheroidal window with W = 0.008 and is therefore omitted

for brevity.

It is seen that a lower highest sidelobe level than the Nuttall

and Prolate windows is obtained by slightly sacrificing the nar-

rowness of the main lobe. More importantly, in Fig. 1 we observe

that the falloff of the window is 18 dB per octave because it is

once-differentiable at all points in its domain.

7. THE PERFORMANCE OF IMPROVED WINDOWS

7.1. Signals with single component

To compare the average estimation error variance with the theo-

retical minimum given by the Cramér-Rao bound we synthesized

K1 random chirps using Eq. 1 with Q = 2 and parameters cho-

sen from uniform distributions justified in [1]. The original Hann

window, the windows proposed by Nuttall and the new digital pro-

late based window were used to synthesize the atoms as described

in Sec. 4 and their estimation error variance was compared (see

Fig. 2). After performing the DFT to obtain inner products with the
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atoms, the three atoms whose inner products were greatest were

used in the estimations, i.e., R = 3 in Eq. 10. The windows with

the lowest sidelobes only give the lowest error variance at very

favourable SNRs, at real-world SNRs the original Hann window

still performs best at estimating the parameters of a single compo-

nent signal.

Synthesize K2 single-

component signals.

Modulate so that peak

bin is at frequency

0 for all signals.

Set d = 0.

Choose K2(K2 − 1)
pairs of signals.

Scale one in each

pair to give desired

power from S and

modulate to peak

bin according to d.

Add each signal

pair together.

For each pair, try

estimating parameters

of unmodulated

component with atoms

at bins {−1, 0, 1}.

For each pair,

try estimating

parameters of

modulated component

with atoms at bins

{d − 1, d, d + 1}.

Sum estimation errors

of each parameter and

divide by K2(K2 − 1).

Increment d by ∆d.

If d < D.

If signal power

ratios in S
remaining to

be evaluated.

Figure 4: The evaluation procedure for 2-component signals.

7.2. Signals with 2 components

To evaluate the performance of the various windows when esti-

mating the parameters of components in mixture we synthesized

signals using Eq. 3 with P = 2 and Q = 2 and parameters chosen

from the uniform distributions specified in [1]. We desired to see

how the accuracy of estimation is influenced by the difference (in

bins) between the locally maximized atoms and the difference in

signal power between the two components. To obtain a set of com-

ponents from which test signals exhibiting the desired differences

could be constructed, we synthesized a set C ofK2 components for

which the energy is maximized in bin 0. Test signals were obtained

by choosing a pair of unique components from this set and modu-

lating one to give the desired frequency and amplitude difference.

This was carried out as follows: the atom r∗ for which the inner

product was maximized was determined for each unmixed chirp

and the chirp was modulated by exp(−2π r
∗n
N
j) for 0 ≤ n < N

in order to move this maximum to r = 0. Then for each desired

difference d, with 0 ≤ d < D (for the evaluation D = 40), two

unique chirps were selected from C and one chirp was modulated

by exp(2π nd
N
j) for 0 ≤ n < N in order to give the desired dif-

ference between maxima. This component was also scaled by a

constant to give a desired signal power ratio from set S with the

other component (the power ratios S tested were 0 dB and -30 dB).

As we assume perfect peak-atom selection for this evaluation no

inner-product maximizing r∗ is chosen, rather atoms with angular

frequencies ω = 2π d̂
N

for d̂ ∈ {d− 1, d, d+ 1} in Eq. 20 (again,

R = 3) were chosen to carry out the estimation. d was incre-

mented by ∆d = 0.25 and so d̂ was not generally integral valued

in this case. The parameters of the unmodulated component were

estimated using angular frequencies ω = 2π d̂
N

for d̂ ∈ {−1, 0, 1}
in Eq. 20. The squared estimation error for each parameter was

summed and divided by K2(K2 − 1) (the number of choices of

two unique components) to give the averaged squared estimation

error for each parameter at each difference d. The procedure is

summarized in Fig. 4.

The behaviour of the windows when used to analyse mixtures

of non-stationary signals is similar to the behaviour of windows

used for harmonic analysis in the stationary case [16]; here we

obtain further insight into how the estimation of each coefficient

of the polynomial in Eq. 1 is influenced by main-lobe width and

sidelobe height and slope. In Fig. 3 we see that there is generally

less estimation error for components having similar signal power.

This is to be expected as there will be less masking of the weaker

signal in these scenarios. The estimation error is large when the

atoms containing the most signal energy for each component are

not greatly separated in frequency. This is due to the convolu-

tion of the Fourier transform of the window with the signal, and

agrees with what was predicted by Eq. 17: indeed windows with a

larger main lobe exhibit a larger “radius” (bandwidth) in which the

error of the parameter estimation will be high. However, for sig-

nals where local inner-product maxima are from atoms sufficiently

separated in frequency, windows with lower sidelobes are better at

attenuating the other component and for these the estimation error

is lowest.

8. CONCLUSIONS

Motivated by the need to analyse mixtures of frequency- and am-

plitude-modulated sinusoids (Eq. 3), we have shown that the DDM

can be employed under a single-component assumption when com-

ponents have roughly disjoint sets of atoms for which their inner

products take on large values. This indicates the need for windows

whose Fourier transform exhibits low sidelobes. We developed

windows whose sidelobes are minimized while remaining every-

where once-differentiable: a requirement to generate valid atoms

for the DDM. These windows were shown to only improve param-

eter estimation of P = 1 component with argument-polynomial of

order Q = 2 in low amounts of noise. However, for P = 2 com-

ponents of the same order in mixture without noise, granted the
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components exhibited reasonable separation in frequency between

the atoms for which the inner product was maximized, these new

windows substantially improved the estimation of all but the first

argument-polynomial coefficient.

Further work should evaluate these windows on sinusoids of

different orders, i.e., Q ≫ 1. Optimal main-lobe widths for win-

dows should be determined depending on the separation of local

maxima in the power spectrum. It should also be determined if

these windows improve the modeling of real-world acoustic sig-

nals.
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Figure 3: The mean squared estimation error for each parameter in an analysis of two components in mixture. A set of K2 = 10 chirps

was synthesized and each unique pair used for maximum bin differences 0 ≤ d < 40, with d varied in 0.25 bin increments. The signal

power ratio between components is indicated with colours and the corresponding ratio in decibels is indicated in the plot legend. The names

indicate the windows used to generate the atoms for estimation: N3 and N4 are the 3- and 4-cosine-term continuous Nuttall windows, H is

the Hann window, and P5 is the continuous 5-cosine-term approximation to a digital prolate window as described in Sec. 6.
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